100% NVIDIA Compatible single port transceiver, 400Gbps, NDR, OSFP, MPO12 APC, 850nm MMF, up to 50m, flat top 5 Year Warranty

PMA4Z00-NS400

Application

- 400G Ethernet
- Infiniband Interconnect

Standards

- OSFP MSA
- IEEE 802.3ck

Features

- OSFP MSA
- Up to 106.25Gbps Data Rate Per Channel by PAM4 Modulation
- Up to 50m OM4 MMF transmission
- MTP/MPO-12 (APC) Optical Connector
- CMIS Compliance

- Single 3.3 V Power Supply
- Maximum Power Consumption 9W
- Operating Case Temperature: 0°C to 70°C

Description

The 400GBASE-VR4F OSFP module, MTP/MPO-12 connector, up to 50m over parallel OM4 multi-mode fiber.

It is compliant with OSFP MSA, IEEE 802.3ck protocol and 400GAUI-4 standards.

The built-in digital diagnostics monitoring (DDM) allows access to real-time operating parameters.

It is suitable for 400G Ethernet and Infiniband. It also support 1 x 400G point to point connection.

Product Specifications

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

II. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Case Temperature	Тор	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			53.125		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10-4		
Post-FEC Bit Error Ratio				1x10-12		1
Link Distance with OM4	D1	2		50	m	2
Link Distance with OM3	D2	2		30	m	2

Notes:

[1] FEC provided by host system.

[2] FEC required on host system to support maximum distance.

III. Optical Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unite	Note
	т	ransmitter				
Data Rate, each Lane		53.	.125 ± 100 ppm		GBd	
Modulation Format			PAM4			
Wavelength	λ	842		948	nm	
RMS Spectral Width				0.65	nm	1
Average Launch Power, each Lane	PAVG	-4.6		4	dBm	
Outer Optical Modulation Amplitude (OMAouter), each Lane	POMA	-2.6(For max (TECQ, TDECQ) ≤1.8 dB)- 4.4 + max(TECQ, TDECQ) (For 1.8< max (TECQ, TDECQ) ≤ 4.4 dB)		3.5	dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ, each Lane	TDECQ			4.4	dB	
Transmitter Eye Closure for PAM4, each Lane	TECQ			4.4	dB	
Overshoot/Undershoot				29	%	
Transmitter Power Excursion, each Lane				2.3	dBm	
Extinction Ratio	ER	2.5			dB	
Transition Time	Tt			17	ps	
Average Launch Power of OFF Transmitter, each Lane	Poff			-30	dBm	
RIN 14 OMA	RIN			-132	dB/Hz	
Optical Return Loss Tolerance	TOL			14	dB	

Parameter	Symbol	Min.	Тур.	Max.	Unite	Note
Encircled Flux			≥ 86% at ≤ 30% at 4	19 μm 4.5 μm		2
		Receive	r			
Data Rate, each Lane		5	53.125 ± 100	0 ppm	GBd	
Modulation Format			PAM4	ŀ		
Center Wavelength	λ	842		948	Nm	
Damage Threshold, each Lane	THd	5			dBm	3
Average Receive Power, each Lane		-6.3		4	dBm	4
Receive Power (OMA outer),				3.5	dBm	
each Lane Beceiver Beflectance	RR			-15	dB	
				-4.4(For		
Receiver Sensitivity (OMAouter),each Lane	SEN			TECQ ≤1.8 dB) -6.2 +TECQ (For 1.8 <tecq ≤ 4.4 dB)</tecq 	dBm	5
Stressed Receiver	SRS			-1.8	dBm	6
Sensitivity(OMAouter), each Lane						
LOS Assert	LOSA	-15			dBm	
LOS De-assert	LOSD			-9.2	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			4.4		dB	

Parameter	Symbol	Min.	Тур.	Max.	Unite	Note
OMAouter of each Aggressor Lane			3.5		dBm	2

Notes:

[1] RMS spectral width is the standard deviation of the spectrum.

[2] If measured into type A1a.2 or type A1a.3, or A1a.4, 50 µm fiber, in accordance with IEC 61280-1-4.

[3] The receiver shall be able to tolerate, without damage,

continuous exposure to a modulated optical input signal having this power level on one lane.

The receiver does not have to operate correctly at this input power.

[4] Average receive power, each lane (min) is informative and not the principal indicator of signal strength.

A received power below this

value cannot be compliant; however, a value above this does not ensure compliance.

[5] Receiver sensitivity (OMAouter) is informative and is defined for a transmitter with a value of TECQ up to 4.4 dB.

Receiver sensitivity should meet Equation (1)

$$RS = max(-4.4, TECQ - 6.2)$$
 (1)

Where: RS is the receiver sensitivity,

and TECQ is the TECQ of the transmitter used to measure the receiver sensitivity.[6]

Measured with conformance test signal at TP3 for the BER equal to 2.4x10-4.

[7] These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

IV. Electrical Characteristics

Parameter	Test Point	Min.	Тур.	Max.	Unit	Note
Power Consumption				12	W	
Supply Current	lcc			3.83	А	
	Module In	put (each Lai	ne)			
Signaling Rate, each Lane	TP1	53.1	25 ± 100 ppm		GBd	
Differential pk-pk Voltage Tolerance	TP1a	750			mV	
Peak-to-peak AC Common- Mode Voltage Tolerance Low-frequency, VCMLF Full-band,VCMFB	TP1a	3280			mV	
Differential-mode to Common- mode Return Loss, RLcd	TP1	IEEE 802.3ckEqu ation(120G –2)			dB	
Effective Return Loss, ERL	TP1	8.5			dB	
Differential Termination Mismatch	TP1			10	%	
Module Stressed Input Tolerance	TP1a	IEEE80)2.3ck 120G.3.4	1.3		
Single-ended Voltage Tolerance Range	TP1a		-0.4 to 3.3		V	
DC Common-mode Voltage Tolerance Upper Limit Lower	TP1		2.85 -0.35		V	
Linit	Receive	er (each Lane)			
Signaling Rate, each Lane	TP4	53.	125 ± 100 ppm		GBd	
Peak-to-peak AC Common- mode Voltage Low-frequency, VCMLF Full-band, VCMFB	TP4			32 80	mV	
Differential peak-to-peak Output Voltage Short Mode Long Mode	TP4			600845	mV	
Eye Height	TP4	15			mV	

Parameter	Test Point	Min.	Тур.	Max.	Unit	Note
Vertical Eye Closure, VEC	TP4			12	dB	
Common-mode to Differential- mode Return loss, RLdc	TP4	IEEE802.3ck Equation (120G–1)			dB	
Effective Return Loss, ERL	TP4	8.5			dB	
Differential Termination Mismatch	TP4	8.5			ps	
DC common-mode Voltage Tolerance Upper Limit Lower Limit	TP4		2.85 -0.35		V	

V.Digital Diagnostic Monitor Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
Temperature Monitor Absolute Erro	Dr DMI_Temp	-3	3	degC	Over Operating Temperature Range
Supply Voltage Monitor Absolute Error	DMI_VCC	-0.1	0.1	V	Over Full Operating Range
Channel RX Power Monitor Absolute Error	DMI_RX_Ch	-2	2	dB	1
Channel Bias Current Monitor	DMI_Ibias_Ch	-10%	10%	mA	
Channel TX Power Monitor Absolute Error	DMI_TX_Ch	-2	2	dB	1

Notes:

[1] Due to measurement accuracy of different single mode fibers, therecould be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

V. Pin Assignment

Pin	Symbol	Description	Logic	Direction	Plug Sequence
1	GND		Ground		1
2	TX2p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3
4	GND		Ground		1
5	TX4p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3
7	GND		Ground		1
8	ТХ6р	Transmitter Data Non- Inverted	CML-I	Input from Host	3
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3
10	GND		Ground		1
11	TX8p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3
13	GND		Ground		1
14	SCL	2-wire Serial interface clock	LVCMOS- I/O	Bi-directional	3
15	VCC	+3.3V Power		Power from Host	2
16	VCC	+3.3V Power		Power from Host	2
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3
18	GND		Ground		1

Pin	Symbol	Description	Logic	Direction	Plug Sequence
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3
21	GND		Ground		1
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3
24	GND		Ground		1
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3
27	GND		Ground		1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3
30	GND		Ground		1
31	GND		Ground		1
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND		Ground		1
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3

Pin	Symbol	Description	Logic	Direction	Plug Sequence
37	GND		Ground		1
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3
40	GND		Ground		1
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND		Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi-directional	3
45	VCC	+3.3V Power		Power from Host	2
46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi-directional	3
48	GND		Ground		1
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3
50	ТХ7р	Transmitter Data Non- Inverted	CML-I	Input from Host	3
51	GND		Ground		1
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
54	GND		Ground		1

Pin	Symbol	Description	Logic	Direction	Plug Sequence
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3
56	ТХ3р	Transmitter Data Non- Inverted	CML-I	Input from Host	3
57	GND		Ground		1
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
60	GND		Ground		1

VI. Optical Module Block Diagram

VII. Recommended Power Supply Filter

VIII. Diagram Mechanical Dimensions

IX. Optical Interface

X. ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD -883, Method 3015.4 /JESD22-A114-A (HBM). However normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging.

It should be removed from the packaging and handled only in an ESD protected environment.

XI. Laser Safety

This is a Class I Laser Product, or Class 1 Laser Product according to IEC/EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3.as described in Laser Noti ce No.56, dated May 8, 2019.

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering Information

Part Number	Description
PMA4Z00-NS400	100% NVIDIA Compatible single port transceiver, 400Gbps, NDR, OSFP, MPO12 APC, 850nm MMF, up to 50m, flat top 5 Year Warranty

Questions? Contact GOPNY@PNY.COM

WWW.DNY.COM PNY Technologies, Inc. 100 Jefferson Road, Parsippany, NJ 07054 | Tel 973-515-9700 | Fax 973-560-5590 | www.PNY.com Features and specifications subject to change without notice. The PNY logo is a registered trademark of PNY Technologies, Inc. All other trademarks are the property of their respective owners. ©2024 PNY Technologies, Inc. All rights reserved.

